Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765557

ABSTRACT

In this paper, we discuss the creation of a hybrid magnetorheological elastomer that combines nano- and microparticles. The mixture contained 45 wt.% fillers, with combinations of either 0% nanoparticles and 100% microparticles or 25% nanoparticles and 75% microparticles. TGA and FTIR testing confirmed the materials' thermal and chemical stability, while an SEM analysis determined the particles' size and morphology. XRD results were used to determine the crystal size of both nano- and microparticles. The addition of reinforcing particles, particularly nanoparticles, enhanced the stiffness of the composite materials studied, but their overall strength was only minimally affected. The computed interaction parameter relative to the volume fraction was consistent with the previous literature. Furthermore, the study observed a magnetic response increment in composite materials reinforced with nanoparticles above 30 Hz. The isotropic material containing only microparticles had a lower storage modulus than the isotropic sample with nanoparticles without a magnetic field. However, when a magnetic field was applied, the material with only microparticles exhibited a higher storage modulus than the samples with nanoparticles.

2.
Polymers (Basel) ; 15(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765633

ABSTRACT

Dimensional analysis through the Buckingham Pi theorem was confirmed as an efficient mathematical tool to model the otherwise non-linear high order ultrasonic micro-injection molding process (UMIM). Several combinations of processing conditions were evaluated to obtain experimental measurements and validate the derived equations. UMIM processing parameters, output variable energy consumption, and final specimen's Young modulus were arranged in dimensionless groups and formulated as functional relationships, which lead to dimensionless equations that predict output variables as a function of the user-specified processing parameters and known material properties.

3.
Polymers (Basel) ; 15(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37688207

ABSTRACT

In this study, a piezoelectric harvesting device was developed using polyvinylidene fluoride (PVDF) nanofibers reinforced with either BaTiO3 nanoparticles or graphene powder. BaTiO3 nanoparticles were synthesized through the sol-gel method with an average size of approximately 32 nm. The PVDF nanofibers, along with the nanoparticle composites in an acetone-N,N-dimethylformamide mixture, were produced using a centrifugal Forcespinning™ machine, resulting in a heterogeneous arrangement of fiber meshes, with an average diameter of 1.6 µm. Experimental tests revealed that the electrical performance of the fabricated harvester reached a maximum value of 35.8 Voc, demonstrating the potential of BaTiO3/ PVDF-based piezoelectric devices for designing wearable applications such as body-sensing and energy-harvesting devices.

4.
Polymers (Basel) ; 15(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37514439

ABSTRACT

In recent years, there has been a growing demand for biocompatible medical devices on the microscale. However, the manufacturing of certain microfeatures has posed a significant challenge. To address this limitation, a new process called ultrasonic injection molding or ultrasonic molding (USM) has emerged as a potential solution. In this study, we focused on the production of a specific microdevice known as Hem-O-Lok, which is designed for ligation and tissue repair during laparoscopic surgery. Utilizing USM technology, we successfully manufactured the microdevice using a nonabsorbable biopolymer that offers the necessary flexibility for easy handling and use. To ensure high-quality microdevices, we extensively investigated various processing parameters such as vibration amplitude, temperature, and injection velocity. Through careful experimentation, we determined that the microdevice achieved optimal quality when manufactured under conditions of maximum vibrational amplitude and temperatures of 50 and 60 °C. This conclusion was supported by measurements of critical microfeatures. Additionally, our materials characterization efforts revealed the presence of a carbonyl (C=O) group resulting from the thermo-oxidation of air in the plasticizing chamber. This finding contributes to the enhanced thermal stability of the microdevices within a temperature range of 429-437 °C.

5.
Polymers (Basel) ; 14(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406279

ABSTRACT

In this article, a recent formulation for real-time simulation is developed combining the strain energy density of the Spring Mass Model (SMM) with the equivalent representation of the Strain Energy Density Function (SEDF). The resulting Equivalent Energy Spring Model (EESM) is expected to provide information in real-time about the mechanical response of soft tissue when subjected to uniaxial deformations. The proposed model represents a variation of the SMM and can be used to predict the mechanical behavior of biological tissues not only during loading but also during unloading deformation states. To assess the accuracy achieved by the EESM, experimental data was collected from liver porcine samples via uniaxial loading and unloading tensile tests. Validation of the model through numerical predictions achieved a refresh rate of 31 fps (31.49 ms of computation time for each frame), achieving a coefficient of determination R2 from 93.23% to 99.94% when compared to experimental data. The proposed hybrid formulation to characterize soft tissue mechanical behavior is fast enough for real-time simulation and captures the soft material nonlinear virgin and stress-softened effects with high accuracy.

6.
Polymers (Basel) ; 14(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35335432

ABSTRACT

In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure-property-processing relationship for manufacturing high-performance carbon-fiber-reinforced polymer composites (CFRPCs). The parameters were obtained using differential scanning calorimetry (DSC) measurements and the Flynn-Wall-Ozawa, Kissinger, Borchardt-Daniels, and Friedman approaches. The DSC thermograms show two exothermic peaks that were deconvoluted as two separate reactions that follow autocatalytic models. Furthermore, the mechanical properties of produced carbon fiber/Aerotuf 275-34™ laminates using thermosetting polymers such as epoxies, phenolics, and cyanate esters were evaluated as a function of the conversion degree, and a close correlation was found between the degree of curing and the ultimate tensile strength (UTS). We found that when the composite material is cured at 160 °C for 15 min, it reaches a conversion degree of 0.97 and a UTS value that accounts for 95% of the maximum value obtained at 200 °C (180 MPa). Thus, the application of such processing conditions could be enough to achieve good mechanical properties of the composite laminates. These results suggest the possibility for the development of strategies towards manufacturing high-performance materials based on the modified epoxy resin (Aerotuf 275-34™) through the curing process.

7.
Materials (Basel) ; 15(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35208089

ABSTRACT

Using experimental measurements and numerical computations, this paper focuses on studying the evolution of the plastic zone and how the residual stresses change in a notched T-6061 aluminum sample. Before the crack initiation, digital image measurements were taken to visualize the evolution of the plastic zone. After the sample was fractured, the material microstructure and the residual stresses around the cracked zone were characterized through optical microscopy and X-ray diffractometry. This article describes in detail how the plastic zone evolved around the notch before the crack initiation and shows the close agreement between experimental and numerical data during the load increment. The surface residual stress values around the tip of the notched sample were also measured and computed to give a better understanding of the affected region during the fracture process.

8.
Materials (Basel) ; 14(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807013

ABSTRACT

In this work, a previously developed mathematical model to predict bulk density of SLMed (produced via Selective Laser Melting) component is enhanced by taking laser power, scanning speed, hatch spacing, powder's thermal conductivity and specific heat capacity as independent variables. Experimental data and manufacturing conditions for the selective laser melting (SLM) of metallic materials (which include aluminum, steel, titanium, copper, tungsten and nickel alloys) are adapted from the literature and used to evaluate the validity of the proposed enhanced model. A strong relation between dependent and independent dimensionless products is observed throughout the studied materials. The proposed enhanced mathematical model shows to be highly accurate since the computed root-mean-square-error values (RMSE) does not exceed 5 × 10-7. Furthermore, an analytical expression for the prediction of bulk density of SLMed components was developed. From this, an expression for determining the needed scanning speed, with respect to laser power, to achieve highly dense components produced via SLM, is derived.

9.
Materials (Basel) ; 14(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494386

ABSTRACT

In this work, dimensional analysis is used to develop a general mathematical model to predict bulk density of SLMed components taking volumetric energy density, scanning speed, powder's thermal conductivity, specific heat capacity, and average grain diameter as independent variables. Strong relation between dependent and independent dimensionless products is observed. Inconel 718 samples were additively manufactured and a particular expression, in the form of a power-law polynomial, for its bulk density, in the working domain of the independent dimensionless product, was obtained. It is found that with longer laser exposure time, and lower scanning speed, better densification is attained. Likewise, volumetric energy density has a positive influence on bulk density. The negative effect of laser power in bulk density is attributed to improper process conditions leading to powder particle sublimation and ejection. A maximum error percentage between experimental and predicted bulk density of 3.7119% is achieved, which corroborates the accuracy of our proposed model. A general expression for determining the scanning speed, with respect to laser power, needed to achieve highly dense components, was derived. The model's applicability was further validated considering SLMed samples produced by AlSi10Mg and Ti6Al4V alloys. This article elucidates how to tune relevant manufacturing parameters to produce highly dense SLM parts using mathematical expressions derived from Buckingham's π- theorem.

10.
Polymers (Basel) ; 12(9)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906722

ABSTRACT

This research focuses on investigating how physical and mechanical properties of polypropylene (PP) recycled material are modified when ultrasonic micro injection molding (UMIM) technology is used to produce material specimens. Experimental characterization by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and rheology tests show that the fabricated PP samples were able to withstand up to five times recycled processing before some signs of mechanical and physical properties degradation are observed. Surprisingly, uniaxial extension tests show an increase of 3.07%, 10.97% and 27.33% for Young's modulus, yield stress and ultimate stress values, respectively, and a slight reduction of 1.29% for the samples elongation at break when compared to the experimental data collected from virgin material samples. The improvement of these mechanical properties in the recycled samples suggests that ultrasonic microinjection produces a mechano-chemical material change.

11.
Int J Mol Sci ; 21(15)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727021

ABSTRACT

The aim of this article was to investigate the mechanical performance of magnetorheological polyurethane elastomers reinforced with different concentrations of carbonyl iron microparticles (CIPs) in which stress softening, energy dissipation, residual strains, microparticles orientation, and magnetic flux density effects will be considered. Other aspects, such as the determination of the dissipated energy during cyclic loading and unloading, were investigated by considering a pseudo-elastic network model that takes into account residual strains, magnetic field intensity, and the isotropic and anisotropic material behavior. Theoretical predictions confirmed that the material shear modulus becomes sensitive not only for higher concentrations of CIPs added into the elastomer material matrix, but also to the magnetic flux intensity that induces attractive forces between CIPs and to the strong bonds between these and the elastomer matrix. It was also found that the addition of CIPs when embedded into the polymer matrix with a predefined orientation enhances the material shear modulus as well as its capacity to dissipate energy when subjected to magnetic flux density in loading and unloading directions.


Subject(s)
Elastomers/chemistry , Magnetic Fields , Polyurethanes/chemistry , Rheology
12.
Nanotechnology ; 28(42): 425302, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28922139

ABSTRACT

We report the design, fabrication, and characterization of novel, low-cost, and modular miniaturized nanofiber electrospinning sources for the scalable production of non-woven aligned nanofiber mats with low diameter variation. The devices are monolithic arrays of electrospinning emitters made via stereolithography; the emitters are arranged so each element has an independent line of sight to a rotating collector surface. Linear and zigzag emitter packing were evaluated using a PEO solution with the aim of maximizing the throughput of nanofibers with the smallest diameter and narrowest distribution. Current versus flowrate characterization of the devices showed that for a given flowrate a zigzag array produces more current per emitter than a linear array of the same emitter pitch and array size. In addition, the data demonstrate that larger and denser arrays have a net gain in flow rate per unit of active length. Visual inspection of the devices suggests uniform operation in devices with as many as 17 emitters with 300 µm inner diameter and 1.5 mm emitter gap. Well-aligned nanofiber mats were collected on a rotating drum and characterized; the 17-emitter device produced the same narrow nanofiber distribution (∼81 nm average diameter, ∼17 nm standard deviation) for all tested flow rates, which is strikingly different to the performance shown by 1-emitter sources where the average fiber diameter significantly increased and the statistics notably widened when the flowrate increases. Therefore, the data demonstrate that massively multiplexing the emitters is a viable approach to greatly increase the throughput of non-woven aligned nanofiber mats without sacrificing the statistics of the nanofibers generated. The production of dry nanofibers by the 17-emitter array is estimated at 33.0 mg min-1 (1.38 mg min-1 per mm of active length), which compares favorably with the reported multiplexed electrospinning arrays with emitters distributed along a line.

SELECTION OF CITATIONS
SEARCH DETAIL
...